Matrix Problem-Solving 2: Determinants and Inverses

Matrix Problem-Solving 2: Determinants and Inverses

Problem Set

Find the determinant of the following matrices:

A=(3846)A = \begin{pmatrix} 3 & 8 \\ 4 & 6 \end{pmatrix}
B=(7521)B = \begin{pmatrix} 7 & 5 \\ 2 & 1 \end{pmatrix}
C=(102213121)C = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix}
D=(4325)D = \begin{pmatrix} 4 & 3 \\ 2 & 5 \end{pmatrix}
E=(2314)E = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}
F=(6739)F = \begin{pmatrix} 6 & 7 \\ 3 & 9 \end{pmatrix}
G=(583271964)G = \begin{pmatrix} 5 & 8 & 3 \\ 2 & 7 & 1 \\ 9 & 6 & 4 \end{pmatrix}
H=(201341123)H = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 4 & 1 \\ 1 & 2 & 3 \end{pmatrix}
I=(7435)I = \begin{pmatrix} 7 & 4 \\ 3 & 5 \end{pmatrix}
J=(2163)J = \begin{pmatrix} 2 & 1 \\ 6 & 3 \end{pmatrix}

Find the inverse of the following matrices (if it exists):

K=(1234)K = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
L=(5213)L = \begin{pmatrix} 5 & 2 \\ 1 & 3 \end{pmatrix}
M=(4332)M = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}
N=(78910)N = \begin{pmatrix} 7 & 8 \\ 9 & 10 \end{pmatrix}
O=(1001)O = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
P=(3572)P = \begin{pmatrix} 3 & 5 \\ 7 & 2 \end{pmatrix}
Q=(8346)Q = \begin{pmatrix} 8 & 3 \\ 4 & 6 \end{pmatrix}
R=(2112)R = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
S=(4715)S = \begin{pmatrix} 4 & 7 \\ 1 & 5 \end{pmatrix}
T=(9362)T = \begin{pmatrix} 9 & 3 \\ 6 & 2 \end{pmatrix}

Solve the system of linear equations using the inverse matrix method:

2x+3y=54x+y=6\begin{aligned} 2x + 3y &= 5 \\ 4x + y &= 6 \end{aligned}
x+2y=73xy=5\begin{aligned} x + 2y &= 7 \\ 3x - y &= 5 \end{aligned}
3x4y=22x+5y=1\begin{aligned} 3x - 4y &= 2 \\ 2x + 5y &= 1 \end{aligned}
xy=3x+y=5\begin{aligned} x - y &= 3 \\ x + y &= 5 \end{aligned}
4x+3y=8x2y=2\begin{aligned} 4x + 3y &= 8 \\ x - 2y &= 2 \end{aligned}