Matrix Problem-Solving 3: Solving Linear Systems with Matrices

Solving linear systems using matrices, showcasing Gaussian elimination, matrix inverses, and Cramer’s Rule on a blackboard.
 

Problem Set 1:

  1. Solve using Gaussian elimination:

    2x+y=54xy=7

    Solution:

    x=3,y=1
  2. Solve using the inverse matrix method:

    x+2y=43xy=5

    Solution:

    x=2,y=1
  3. Apply Cramer’s Rule to solve:

    x+y=32xy=1

    Solution:

    x=1,y=2
  4. Gaussian elimination:

    2x+y+z=9x+2yz=53xy+z=4

    Solution:

    x=2,y=3,z=1
  5. Inverse matrix method:

    x+3y=74x+y=10

    Solution:

    x=1,y=2

Problem Set 2:

  1. Cramer’s Rule:

    2x+y=53xy=4

    Solution:

    x=3,y=1
  2. Gaussian elimination:

    x+2y+3z=103x+4yz=82xy+z=3

    Solution:

    x=2,y=1,z=2
  3. Inverse matrix method:

    3xy=82x+y=9

    Solution:

    x=3,y=3
  4. Gaussian elimination:

    xy+z=52x+y+z=103x2yz=7

    Solution:

    x=3,y=1,z=2
  5. Cramer’s Rule:

    4x+3y=20xy=1

    Solution:

    x=4,y=3

Problem Set 3:

  1. Gaussian elimination:

    x+y+z=62x3y+z=4xy+2z=3

    Solution:

    x=3,y=1,z=2
  2. Inverse matrix method:

    5x+4y=203x2y=5

    Solution:

    x=3,y=1
  3. Cramer’s Rule:

    2x+5y=123x+y=10

    Solution:

    x=2,y=2
  4. Gaussian elimination:

    x+y+z=72x+4y+z=153x+6yz=10

    Solution:

    x=1,y=2,z=4
  5. Inverse matrix method:

    4x2y=82x+3y=5

    Solution:

    x=2,y=1

Problem Set 4:

  1. Gaussian elimination:

    3x+2yz=7x+4y+2z=102xy+3z=15

    Solution:

    x=1,y=2,z=3
  2. Cramer’s Rule:

    5x+2y=133xy=4

    Solution:

    x=2,y=1
  3. Inverse matrix method:

    3x+4y=182x3y=7

    Solution:

    x=4,y=1
  4. Gaussian elimination:

    x+3yz=22xy+4z=123x+yz=5

    Solution:

    x=1,y=2,z=3
  5. Cramer’s Rule:

    4xy=9x+y=5

    Solution:

    x=2,y=3